Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function.
نویسندگان
چکیده
Cellular metabolites, such as acyl-CoA, can modify proteins, leading to protein posttranslational modifications (PTMs). One such PTM is lysine succinylation, which is regulated by sirtuin 5 (SIRT5). Although numerous proteins are modified by lysine succinylation, the physiological significance of lysine succinylation and SIRT5 remains elusive. Here, by profiling acyl-CoA molecules in various mouse tissues, we have discovered that different tissues have different acyl-CoA profiles and that succinyl-CoA is the most abundant acyl-CoA molecule in the heart. This interesting observation has prompted us to examine protein lysine succinylation in different mouse tissues in the presence and absence of SIRT5. Protein lysine succinylation predominantly accumulates in the heart whenSirt5is deleted. Using proteomic studies, we have identified many cardiac proteins regulated by SIRT5. Our data suggest that ECHA, a protein involved in fatty acid oxidation, is a major enzyme that is regulated by SIRT5 and affects heart function.Sirt5knockout (KO) mice have lower ECHA activity, increased long-chain acyl-CoAs, and decreased ATP in the heart under fasting conditions.Sirt5KO mice develop hypertrophic cardiomyopathy, as evident from the increased heart weight relative to body weight, as well as reduced shortening and ejection fractions. These findings establish that regulating heart metabolism and function is a major physiological function of lysine succinylation and SIRT5.
منابع مشابه
Sirtuin 5 is required for mouse survival in response to cardiac pressure overload.
In mitochondria, the sirtuin SIRT5 is an NAD+-dependent protein deacylase that controls several metabolic pathways. Although a wide range of SIRT5 targets have been identified, the overall function of SIRT5 in organismal metabolic homeostasis remains unclear. Given that SIRT5 expression is highest in the heart and that sirtuins are commonly stress-response proteins, we used an established model...
متن کاملDesuccinylation of pyruvate kinase M2 by SIRT5 contributes to antioxidant response and tumor growth
Tumor cells trends to express high level of pyruvate kinase M2 (PKM2). The inhibition of PKM2 activity is needed for antioxidant response by diverting glucose flux into the pentose phosphate pathway and thus generating sufficient reducing potential. Here we report that PKM2 is succinylated at lysine 498 (K498) and succinylation increases its activity. SIRT5 binds to, desuccinylates and inhibits...
متن کاملSirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase.
Silent information regulator 2 (Sir2) proteins (sirtuins) are nicotinamide adenine dinucleotide-dependent deacetylases that regulate important biological processes. Mammals have seven sirtuins, Sirt1 to Sirt7. Four of them (Sirt4 to Sirt7) have no detectable or very weak deacetylase activity. We found that Sirt5 is an efficient protein lysine desuccinylase and demalonylase in vitro. The prefere...
متن کاملO-6: A Multi-Regional Study on New Approaches to Investigate The Quality of Human Sperm - Including DNA Fragmentation, Proteomics and Metabolomics
Background: Preliminary data has also shown that there is less fragmented sperm in 2nd and 3rd ejaculates compared to first ones which could be a major factor in determining the pregnancy outcome. Assessing this factor objectively and relating it to other parameters in sperm quality in this study could result in new prediction criteria for the pregnancy outcome. Materials and Methods: As one of...
متن کاملEthanol Metabolism Modifies Hepatic Protein Acylation in Mice
Mitochondrial protein acetylation increases in response to chronic ethanol ingestion in mice, and is thought to reduce mitochondrial function and contribute to the pathogenesis of alcoholic liver disease. The mitochondrial deacetylase SIRT3 regulates the acetylation status of several mitochondrial proteins, including those involved in ethanol metabolism. The newly discovered desuccinylase activ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 16 شماره
صفحات -
تاریخ انتشار 2016